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This paper describes perception and planning systems of an autonomous sea surface vehicle (ASV) whose goal
is to detect and track other vessels at medium to long ranges and execute responses to determine whether
the vessel is adversarial. The Jet Propulsion Laboratory (JPL) has developed a tightly integrated system called
CARACaS (Control Architecture for Robotic Agent Command and Sensing) that blends the sensing, planning,
and behavior autonomy necessary for such missions. Two patrol scenarios are addressed here: one in which the
ASV patrols a large harbor region and checks for vessels near a fixed asset on each pass and one in which the
ASV circles a fixed asset and intercepts approaching vessels. This paper focuses on the ASV’s central perception
and situation awareness system, dubbed Surface Autonomous Visual Analysis and Tracking (SAVAnT), which
receives images from an omnidirectional camera head, identifies objects of interest in these images, and proba-
bilistically tracks the objects’ presence over time, even as they may exist outside of the vehicle’s sensor range.
The integrated CARACaS/SAVAnT system has been implemented on U.S. Navy experimental ASVs and tested
in on-water field demonstrations. C© 2010 Wiley Periodicals, Inc.

1. INTRODUCTION

Operation of autonomous surface vehicles (ASVs) poses a
number of challenging issues, including vehicle survivabil-
ity for long-duration missions in hazardous and possibly
hostile environments, loss of communication and/or local-
ization due to environmental or tactical situations, reacting
intelligently and quickly to highly dynamic conditions, re-
planning to recover from faults while continuing with oper-
ations, and extracting the maximum amount of information
from onboard as well as offboard sensors for situational
awareness. Coupled with these issues is the need to con-
duct missions in areas with other possible adversarial ves-
sels, for example, the protection of high-value fixed assets
such as oil platforms, anchored ships, and port facilities.

In this paper, we present an autonomy system for an
ASV that detects and tracks vessels of a defined class while
patrolling near fixed assets. The ASV’s sensor suite in-
cludes a wide-baseline stereo system for close-up percep-
tion and navigation (less than 200 m) and a 360-deg camera
head for longer range contact detection, identification, and
tracking. Situation awareness for the addressed patrol mis-
sions is primarily determined through processing images
from the 360-deg camera head in the perception system

Some elements of the work described in this paper have been omit-
ted due to International Traffic in Arms Regulations. A more detailed
manuscript may be requested from Dr. Robert Brizzolara, Code 33,
Office of Naval Research.

we call Surface Autonomous Visual Analysis and Tracking
(SAVAnT ). The SAVAnT system is integrated into the Jet
Propulsion Laboratory’s (JPL’s) CARACaS (Control Archi-
tecture for Robotic Agent Command and Sensing) auton-
omy architecture, enabling the ASV to reason about the
appropriate response to the vessels it has identified and
then to execute a particular motion plan.

In particular, we address two types of mission scenar-
ios, each of which entails surveillance around a fixed asset.
In each case, the system is trained to recognize particular
type(s) of boats of interest, referred to as targets because our
problem is ultimately one of multitarget tracking (MTT).
Note that the same SAVAnT core system is used for each
mission, though a different “mode” setting changes minor
details. The two mission scenarios are described below.
• In the anchored fleet protection (AFP) mission, the

ASV patrols a large riverine or harbor region. Although
the ASV may have multiple objectives during its long
(perhaps several hours) patrol, we address the need to
monitor a particular fixed asset along the patrol path.
Every time the ASV passes near the fixed asset, SAVAnT
must detect the nearby targets, localize their positions,
and monitor their presence on subsequent patrol passes
(assuming that they are docked or anchored when first
detected). The patrol region is large, and targets may
come and go while the ASV is away from the asset.
In particular, SAVAnT must identify when an “alert
condition” has been triggered, of which there are two
types: (a) a new target has been detected in the asset’s
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vicinity or (b) a previously detected target has disap-
peared from its previously confirmed position. Infor-
mation regarding the alert target is passed to an au-
tonomous inspection vehicle and also to the human
command and control team.

• For the high-value asset protection (HVAP ) mission,
the ASV patrols a littoral or offshore region, circling a
fixed asset. SAVAnT monitors the surrounding sea for
targets that may be approaching the asset. Upon iden-
tifying a target with sufficient confidence and within a
given range, the ASV deviates from its path to approach
the target boat for closer inspection. Here, the patrol re-
gion is much smaller than in the AFP mission but there
is greater uncertainty about the direction from which the
target may be approaching.

Autonomous perception and planning for these maritime
applications is difficult for numerous reasons. Most chal-
lenging is the task of real-time visual detection of particu-
lar three-dimensional (3D) objects (primarily certain boat
types) in an image under widely varying conditions, af-
fecting viewing angle, lighting, partial occlusions, range,
background, etc. Downstream of the detection process, the
tracker attempts to estimate the objects’ states based on se-
quences of noisy, bearings-only measurements and must
account for false positives, missed detections, and possible
occlusions. Finally, the autonomous planning and naviga-
tion system must include algorithms for reasoning through
the appropriate reactions to the surrounding contacts, us-
ing the (imperfect) output of the perception system to max-
imize chances for mission success.

The AFP mission’s tracking problem is especially dif-
ficult, as long periods of time might elapse between view-
ing the same target and SAVAnT must maintain the target’s
location and identity over time to confirm that the target
still exists or to declare its absence. Note that there may
be many changes in the visual scene that are not of inter-
est on successive passes—for example, different “friendly”
boats (clutter) may be nearby, the lighting conditions and
weather may have changed, and the ASV’s perspective of
the fixed asset may be different. Further, the target may be
“hiding” among much larger boats or along a populated
shoreline, making it viewable only from certain angles for
a short time. Despite these challenges, we wish to have a
reliable alert system to identify changes in our targets’ exis-
tence or positions. To our knowledge, this is a problem that
has not been previously addressed.

The realities of the maritime environment further com-
plicate our scenarios. The pitching and rolling of the ASV
affects the perceived motion of objects. Reflections off the
water surface can cause confusion, and at low sun angles
surface objects are often recognizable only by silhouette.
Although wakes can be useful for identifying boats in a
scene, they are of course absent when the target is station-
ary, which plays a role in deciding how to train detection
algorithms. Finally, image differencing is not readily used

as a tool because it would result in many false positives on
surface waves, and medium-to-high sea states can result in
occlusions and false positives on white caps.

To address these challenges, the SAVAnT system de-
composes the contact detection and target tracking tasks.
We first apply contact detection algorithms, as well as
several helpful image preprocessing steps, separately to
each image of the six cameras that provide the 360-deg
panoramic view, providing the bearings of detected con-
tacts in a frame. Then, a data fusion and target tracking
module analyzes these measurements, hypothesizing the
correct data associations, rejecting false positives, and es-
timating target position. Alert conditions are identified via
a novel method that estimates each target’s probability of
“existence.”

Work reported by Benjamin, Curcio, Leonard, and
Newman (2006) gave details of successful in-water demon-
strations of a behavior-based system that had the rules of
the road explicitly built into the behavior base. In their
demonstrations, position information was shared directly
between vehicles via a wireless link, rather than needing
to be perceived by individual ASVs. Larson, Ebken, and
Bruch (2006) recently reported on a behavior-based hazard
avoidance (HA) system for ASVs that combines delibera-
tive path planning with reactive response to close-in dy-
namic obstacles. Their system used digital nautical charts
(DNCs) for the initial long-range path planning coupled
with a passive stereo system developed at JPL for the re-
active control. The current implementation of their system
does not link any resource use–based planning into the HA
behavior.

An active sensor approach to hazard detection using a
laser range finder for navigation was reported by Jimenez,
Ceres, and Seco (2004). Snyder, Morris, Haley, Collins,
and Okerholm (2004) successfully demonstrated the com-
ponents needed for autonomous in-water navigation in
harbor and riverine environments. Their system used six
cameras arranged as a 360-deg color sensor coupled with
sky/sea/shoreline segmentation, optic flow, and structural
model techniques to determine the relative position of ob-
stacles and safe paths. Nervegna and Ricard (2006) de-
scribed their simulation work in higher level command and
retasking of multiple heterogeneous air, surface, and under-
water vehicles. Their risk-aware, mixed-initiative dynamic
replanning (RMDR) system uses a mixed initiative interac-
tion module (MIIM) for the operator interface and a dy-
namic replanning and situation assessment (DRASA) for
onboard autonomous control.

Most of the works cited above have concentrated on
the navigation and HA aspects for control of autonomous
boats. More complicated scenarios such as HVAP are based
on mission-level autonomy that incorporates these base-
line aspects into an integrated approach. The RMDR system
addresses the planning aspects of such a mission, but the
onboard autonomy is assumed to already be in place.
CARACaS explicitly includes the blend of sensing and
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behavior-based autonomy to build the more complicated
mission scenarios.

Additionally, the patrol ASV scenarios we address here
present new challenges, particularly for the AFP mission.
In most traditional multitarget tracking scenarios, a fixed
sensor continually monitors a given sensor volume; our re-
gion of interest is much larger than our sensor range, and so
the problem relies on the movement of the sensor through
this region for coverage. Additionally, we may leave the
sensor range of a target and return to it later, wishing to
estimate whether it is still the same target.

Finally, the AFP mission might also be viewed from
the perspective of visual change detection, comparing the
scene around the fixed asset on successive passes through
the patrol region. For example, Perera and Hoogs (2004)
offer a change detection solution that operates on an “ob-
ject level,” as ours does. However, we note that several as-
pects of our problem differ from those addressed by these
and other authors. First, we wish to detect only certain
changes, ignoring motion of “benign” vehicles and shore
activity (and of course clouds and waves). Second, we must
allow for significantly different camera positions on sepa-
rate passes. Also, we wish to track targets to estimate their
location. Finally, we note that our method requires neither
image registration nor training data of empty scenes.

The remainder of this paper is organized as follows.
We present an overview of autonomy system, including
its capabilities and architecture, in Section 2. We detail the
core components of SAVAnT —including contact detection
and target tracking/change detection—in Section 3. We de-
scribe our on-water experimental setup and test scenarios
in Section 4 and the corresponding results in Section 5.
Finally, concluding remarks are given in Section 6.

2. AUTONOMY SYSTEM ARCHITECTURE

2.1. CARACaS Overview

Several key aspects of an intelligent autonomy approach
to ASV control include the handling of the inherently un-
certain nature of dynamic sea surface operations; sensing
for hazard detection/avoidance and situational awareness;
behaviors for obeying the rules of the road during inter-
actions with other manned and unmanned vehicles; coop-
eration among heterogeneous vehicles on the sea surface
as well as underwater and in the air; onboard resource-
based planning for mission operations; integrated system
health maintenance for long-duration missions; and the
human operator command interface. JPL has developed
a tightly integrated instantiation of an autonomous agent
called CARACaS, a block diagram of which is shown in
Figure 1, to address many of the issues for survivable, au-
tonomous ASV control (Hansen, Huntsberger, & Elkins,
2006). CARACaS is composed of a dynamic planning en-
gine, a behavior engine, and a perception engine. The

Figure 1. Block diagram of CARACaS. The network in the
behavior engine is built from primitive (dark gray) and com-
posite (light gray) behaviors. The dynamic planning engine in-
teracts with the network at both the primitive and composite
behavior levels.

SAVAnT system is part of the perception engine, which also
includes a stereo vision system for navigation.

2.2. Dynamic Planning Engine

The dynamic planning engine leverages the CASPER (Con-
tinuous Activity Scheduling Planning Execution and Re-
planning) continuous planner (Chien, Knight, Stechert,
Sherwood, & Rabideau, 2000; Chien, Sherwood, Tran,
Castano, Cichy, et al., 2003) developed at JPL. Given an
input set of mission goals and the autonomous vehi-
cle’s current state, CASPER generates a plan of activi-
ties that satisfies as many goals as possible while still
obeying relevant resource constraints and operation rules.
[CASPER has been used to autonomously perform the
planning/replanning for the Earth Observation 1 (EO1)
satellite continuously since November 2004.] Plans are
dynamically updated using an iterative repair algorithm
that classifies plan conflicts (such as a resource over-
subscription) and resolves them individually by perform-
ing one or more plan modifications.

2.3. Behavior Engine

CARACaS leverages the results of previous efforts at
JPL in the multiagent control architecture CAMPOUT
(Control Architecture for Multi-robot Planetary Outposts)
(Huntsberger, Cheng, Baumgartner, Robinson, & Schenker,
2003; Huntsberger, Trebi-Ollennu, Aghazarian, Schenker,
Pirjanian, et al., 2004; Huntsberger, Trebi-Ollennu,
Nayar, Aghazarian, Ganino, et al., 2003) in order to de-
velop behavior composition and coordination mechanisms.
CARACaS uses finite state machines for composition of the
behavior network for any given mission scenarios. These
finite state machines give it the capability of producing for-
mally correct behavior kernels that guarantee predictable
performance.

Journal of Field Robotics DOI 10.1002/rob
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For the behavior coordination mechanism, CARACaS
uses a method based on multiobjective decision theory
(MODT) that combines recommendations from multiple
behaviors to form a set of control actions that represents
their consensus. CARACaS uses the MODT framework
(Pirjanian, 2000) coupled with the interval criterion weights
method (Benjamin, 2002a, 2002b) to systematically narrow
the set of possible solutions (the size of the space grows
exponentially with the number of actions), producing an
output within a time span that is orders of magnitude faster
than a brute-force search of the action space.

2.3.1. Behavior Representation

CARACaS formalizes a behavior, b, as a mapping, b : P ∗ ×
X → [0, 1], that relates a percept sequence p ∈ P ∗ and an
action x ∈ X pair, (p, x), to a preference value that reflects
the action’s desirability. The percept possibly includes (pro-
cessed or raw) sensory input (for example, the appearance
of a new contact, with related position estimate), and the N -
dimensional action space is defined to be a finite set of alter-
native actions. The described mapping assigns to each ac-
tion x ∈ X a continuous valued preference, where the most
desired actions are assigned 1 and undesired actions are as-
signed 0 from that behavior’s point of view. In CARACaS,
behaviors are activated using simple, two-state finite state
machines (“idle” and “run”), in order to maintain real time
control over which collection of behaviors are active at any
given time in a deterministic way.

2.3.2. Behavior Composition

Behavior composition refers to the mechanisms used for
building higher level behaviors by combining lower level
ones. A major issue in the design of behavior-based con-
trol systems is the formulation of effective mechanisms
for coordination of the behaviors’ activities into strategies
for rational and coherent behavior. Behavior coordination
mechanisms (BCMs) manage the activities of lower level
behaviors within the context of a high-level behavior’s
task and objectives. For a detailed overview, discussion,
and comparison of behavior coordination mechanisms, see
Pirjanian (1999).

CARACaS predominantly uses the primary sequential
and parallel composition operators, represented as ⇒ and
‖, respectively. A simple example of the use of the sequen-
tial composition operator is that used in the HVAP mission
behavior:

Patrol ⇒ Intercept ⇒ Inspect ⇒ Patrol . . . ,

where each individual high-level behavior completes be-
fore the next one starts. A simple example of the use of
the parallel composition operator is that used in the go-to-
waypoint with HA behavior:

Maintain Track‖Avoid Hazards,

where the parallel composition operator ‖ can be any num-
ber of BCMs that are used to coordinate the activities.
Among the two used most often are the AND and OR oper-
ations that can be defined in a number of different manners.

The simplest definition for the OR composition
operator is mutual exclusion, meaning that either
Maintain Track is generating the rudder and throttle
commands or Avoid Hazards more or less independently.
In the case of the AND composition operator, both of
the behaviors are contributing to the commands for the
generation of action. Among the most common blending or
fusion methods for the use of an AND operation for fusion
are voting techniques (Huntsberger & Rose, 1998), fuzzy
(Saffiotti, Konolige, & Ruspini, 1995; Yen & Pfluger, 1995),
and MODT (Pirjanian, 2000). CARACaS currently builds
the fusion of the two behavior outputs into the finite state
machine used for the Avoid Hazards behavior by biasing
the choice of safe paths for navigation toward the waypoint
goal, thus accommodating the Maintain Track behavior at
the same time. For details of the underlying behavior-based
framework for CARACaS, see Huntsberger, Trebi-Ollennu,
et al. (2003).

3. SAVAnT PERCEPTION ENGINE

The components of the SAVAnT system are depicted in
Figure 2. SAVAnT receives sensory input from an iner-
tial navigation system (INS) and six cameras, which are
mounted in weather-resistant casing (see Figure 3), each
pointed 60 deg apart to provide 360-deg capability, with
5-deg overlap between each adjacent camera pair. The core
components of the system software are as follows. The im-
age server captures raw camera images and INS pose data
and “stabilizes” the images (for horizontal, image-centered
horizons). The contact server detects objects of interest (con-
tacts) in the stabilized images and calculates absolute bear-
ing for each contact. The OTCD server (object-level tracking
and change detection) interprets series of contact bearings
as originating from true targets or false positives, localizes
target position (latitude/longitude) by implicit triangula-
tion, maintains a database of hypothesized true targets, and
sends downstream alerts when a new target appears or a
known target disappears (see Section 3.2).

3.1. Image and Contact Servers

As noted above, the combined goal of the image server and
contact server is to process the camera images to detect ob-
jects of interest (i.e., contacts), resulting in the bearing mea-
surements of the contacts in each frame.1 Searching the im-
ages for objects of a particular type is the biggest challenge
of these modules—the already-difficult task of real-time

1In this paper, the term frame is used to describe a set of (six) images
taken from all cameras at the same time.

Journal of Field Robotics DOI 10.1002/rob
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OTCD

Figure 2. System components and data flow of the SAVAnT system.

object recognition is complicated by highly variable light-
ing conditions, arbitrary viewing angles, possible occlu-
sions, different contact ranges, and possibly high sea state.
Such variability is illustrated by the example images of de-
sired contacts in Figure 4. The top left image shows the tar-
get boat sitting in front of a large ship that represents the
asset to be protected. This was recorded on a sunny after-
noon with wide dynamic range in the scene, so the camera
gain was low and the target boat has low contrast with the
ship behind it. Also, the camera is oriented at an angle away
from horizontal, due to its mounting, the ASV riding angle
(which depends on its speed), and the current pitch and
roll of the ASV. The top right image shows the same scene
from the same camera on a cloudy day. Here the camera
gain is high and the target boat has greater contrast with
the ship behind it. In the bottom left, the scene is shot from
another angle late in the afternoon with the sun setting be-
hind the ship. This image presents two difficult conditions:
the target boat lies in the shadow of the ship, and the sun

Figure 3. The 360-deg camera head provides the primary data
input to SAVAnT.

glare reflects from the water and waves directly into this
camera view. All three of these images also contain clutter
from the shoreline behind the ship, including small boats
and buildings that approximate the scale of the target boat.
Finally, the bottom right image was recorded in the early
evening with the camera facing away from the sun. The
camera exposure time (1–2 ms) could not be increased to
further brighten the image because the camera has a rolling
shutter—increasing the exposure time while the ASV was
pitching or rolling (or otherwise moving the camera) causes
the image to warp and degrades the image stabilization in
later processing.

In preparation for the object detection algorithms, the
image is stabilized using current INS data, negating most
of the roll and pitch of the camera frame due to sea state
and boat motion. After stabilization, the image is cropped
to a strip centered vertically about the estimated horizon,
so that only regions of interest for surface vessels are pro-
cessed, reducing computation time. The image intensity is
then normalized by using local averages sampled in the sky
and water. These preprocessing steps aid by making the av-
erage input to the contact detection algorithms more consis-
tent, but significant target variability will still be present, as
seen in Figure 4.

The contact detection process must be sensitive
enough to pick up all the real targets from the input with
a relatively low false alarm rate. We apply two custom al-
gorithms specialized for detecting contacts of the particular
vessel type(s) of interest in our scenarios. For each contact
identified by one of these algorithms, a corresponding ab-
solute bearing is backcalculated using the target image lo-
cation, the camera model, the IMU-camera transform, and
the IMU/global positioning system (GPS) data. The bear-
ing and image snippet are appended to the contact list to
be passed to the OTCD module and/or sent to the remote
viewing interfaces.

3.2. Object-Level Tracking and Change Detection

The OTCD algorithm assimilates all the contacts identified
in the contact server to generate the situation awareness
required by the ASV’s mission. Primarily, this responsibil-
ity takes the form of generating and maintaining a list of

Journal of Field Robotics DOI 10.1002/rob
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Figure 4. Example raw images with target, demonstrating high variability in lighting conditions, background clutter, camera roll,
etc. Clockwise from top left: sunny noon, cloudy noon, evening with camera facing away from sun, and late afternoon with camera
facing toward sun. Light/yellow arrow indicates asset to be protected; dark/red arrow indicates target.

targets, including confirming the existence of targets (as op-
posed to false-positive contacts), estimating the location of
targets, and recognizing the change conditions of the AFP
mission. OTCD operates at the “object level” rather than in
the image domain primarily because the AFP scenario re-
quires comparison of the region’s targets over repeated vis-
its [between which the target(s) are not in the image] and
also to obviate the need to register or stitch images from dis-
parate cameras. OTCD accomplishes its goal by essentially
tracking all targets in the patrol region over time, building
a database of all confirmed targets over all visited locales,
with an estimated location, covariance on the location es-
timate, and a probability score of whether the target cur-
rently exists at that location.

Although OTCD fundamentally solves a multitarget
tracking problem, there are crucial differences between
the traditional multitarget problem and our missions,
particularly the AFP mission. We have a moving sensor that
is concerned about target identity over long timescales,
which must cover large gaps of time during which the tar-
get is completely out of sensor range. Usually, traditional
tracking scenarios use either a fixed sensor or, if moving,
one concerned about short timescales; either way, they
are primarily charged with monitoring immediately visible
contacts. By contrast, we must allow the target to “leave

and come back” and still track it as the same vehicle.2 Our
primary innovations to cope with this challenge involve
the invention of a “probability of existence” for each
target as well as new ways of managing variable detection
probabilities.

Note that the tracking and change detection problems
would be relatively straightforward with perfect contact
detection; however, because of the difficulty of the detec-
tion task, OTCD must cope with potentially heavy clut-
ter (false positives) and with missed detections (false neg-
atives). This is especially true because the penalty on a
missed detection is high in our scenarios; thus, contact de-
tection thresholds must remain fairly low, relying on OTCD
to reject most of the false positives. In addition, OTCD
must estimate two-dimensional (2D) target position (lon-
gitude/latitude) from bearings-only measurements, which
are noisy due to detection of different parts of the target
boat (e.g., bow vs. stern) and small imperfections in the
camera models or in synchronizing the image to the IMU.

2In the current implementation, it was not practical to use identify-
ing characteristics of an individual boat to help with this problem.
However, this is a strategy slated for future work.
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Finally, note that the image server and contact server op-
erate at the image level—OTCD is the module responsible
for maintaining a time history as well as for integrating the
information of all six images from a single frame (e.g., man-
aging duplicate contacts in the overlap regions and camera-
to-camera handoffs).

The solution implemented in OTCD can be conceptu-
ally decomposed into three interrelated tasks. The first task
is to assign incoming measurements to known targets or
mark them as new targets or false positives—a classic mul-
titarget data association exercise. The second task of OTCD
is to localize the targets using multiple bearings-only mea-
surements; an appropriate nonlinear state estimation filter
can be selected that will implicitly triangulate the 2D global
positions (e.g., latitude and longitude). Finally, the third
task is to calculate the probability that a suspected target
truly exists (in the estimated position) and use this value
to determine whether alert conditions have been triggered
(for new targets or disappeared targets). For this task, we
have created a notion of “probability of existence,” which
provides a measure that a particular target truly exists and
that it is still in the location it was last observed. This prob-
ability distinguishes true targets from tracks composed of
false positives (clutter) and also forms the basis of our alert
conditions for new/disappeared targets.

3.2.1. Probability of Detection

The probability of detecting a target is a particularly impor-
tant notion in OTCD, as it not only affects whether associ-
ations are made to a given target but also is a key factor
in the probability of existence, described in Section 3.2.2.
Let Pk

d,j
denote the probability that the j th existing target

is detected in frame k. Unlike many traditional multitarget
tracking methods, it is critical in our method that Pk

d,j
is

allowed to vary per target and over time, as the contact de-
tector’s success depends highly on the range to the target.
Also, the fact that Pk

d,j
is zero when target j is out of sensor

range (or occluded) allows OTCD to gracefully maintain its
target list during its patrol.

To define Pk
d,j

, we begin by characterizing sensor per-
formance as a function of the range ρ, defining the nomi-
nal detection probability function fd (ρ). In our implemen-
tation, fd (ρ) is a piecewise constant function as in Figure 5.
However, the true range is unknown because it is only
roughly estimated by triangulation [implicitly in the ex-
tended Kalman filter (EKF)]; rather, a distribution on the
range can be derived from the EKF’s estimate as a Gaussian
distribution with its mean and variance (ρ̂k

j and σ 2
ρk

j

) deter-
mined by rotating and translating the Universal Transverse
Mercator (UTM) coordinate frame to align an axis with the
predicted bearing line.3 Thus, for a more accurate Pk

d,j
,

3Formally, this distribution is not on a true range; rather, this
method allows negative support of the distribution (the possibility
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Figure 5. Example functions showing the nominal probabil-
ity of detection as a function of range fd (ρ) with the Gaussian
distribution of a range estimate fN

(
ρ |·) overlaid. The fd (ρ)

shown in this function matches the parameters used for the
HVAP mission.

we marginalize over the conditional dependence on the
range:

Pk
d,j =

∫ ∞

−∞
fd (ρ) fN

(
ρ |ρ̂k

j , σ 2
ρk

j

)
dρ, (1)

where fN denotes the Gaussian probability density func-
tion (PDF). An example is shown in Figure 5. Note that if,
in this example, we simply used the (fairly uncertain) esti-
mated position directly, the probability of detection would
be fd (ρ̂k

j ) = 0.2. Instead, our method results in Pk
d,j

= 0.45.

3.2.2. Probability of Existence

As noted earlier, OTCD includes a new measure, which we
dub the probability of existence, Pk

e,j , that estimates a confi-
dence level of whether a target truly exists and is still at
its estimated location. This value enables us to evaluate the
AFP scenario conditions and is also used to confirm target
existence in general. Let τ k

j be an indicator variable with
value 1 to signify that the hypothesized target j exists at
time k and 0 indicating that it does not. Similarly, let δk

j in-
dicate whether the j th target is tracked under the current
data association hypothesis. After each frame, we update
the probability that target j exists for every target in every
hypothesis, in a Bayesian manner:

Pk
e,j = P

(
τ k
j = 1

∣∣δk
j

) =
P

(
δk
j

∣∣τ k
j = 1

)
P

(
τ k
j = 1

)
∑

τ k
j ∈{0,1} P

(
δk
j

∣∣τ k
j

)
P

(
τ k
j

) . (2)

P (δk
j |τ k

j ) depends on the values of detection probability and
of associating false positives. Let PFA denote the probability
that a false-positive measurement is incorrectly associated
with an target track. Then the formulas we need for Eq. (2)
are

that the target may be in the direction opposite the bearing), be-
cause it is just an affine coordinate transformation. In practice, this
fact is inconsequential and we can define fd (ρ) for only positive ρ.
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P
(
δk
j = 1

∣∣τ k
j = 1

) = Pk
d,j

+ (
1 − Pk

d,j

)
PFA either detected or, if not, associated to FP,

P
(
δk
j = 1

∣∣τ k
j = 0

) = PFA target does not exist, so detection from FP,

P
(
δk
j = 0

∣∣τ k
j = 1

) = (1 − Pk
d,j

)(1 − PFA) missed detection and not associated to FP,

P
(
δk
j = 0

∣∣τ k
j = 0

) = (1 − PFA) not associated to FP.

The value for PFA can be derived from the probability that
at least one of the false-positive measurements is associ-
ated with the target; however, this value changes for every
frame and for every target. We wish to make simplifying
assumptions so that a constant can be used for PFA with-
out severely impacting performance. For this purpose, we
make the approximation that a measurement will be associ-
ated with the j th target if it is within n standard deviations
of the expected measurement. Then, the probability that a
false measurements is associated with target j (i.e., one mi-
nus the probability that all Nφ FPs are not associated) is

PFA = 1 −
(

1 − 2nσ

V

)Nφ

, (3)

where V is the observation volume and σ is the standard
deviation of the innovation.4 To make the parameter a
constant, for our application we further simplify with the
approximations that Nφ ≈ λφ (the expected value used to
model the probability of false positives), σ ≈ √

r (the stan-
dard deviation of the measurement noise used in the EKF),
and n = 3 (empirically based).

The prior P (τ k
j = 1) is, in the simplest case, just the

result from the last time step. However, this approach
would not model the possibility that a target’s existence can
change over time (e.g., a target moves while out of range).
Thus, we utilize a “forgetting factor” γ to decay the proba-
bility (up to a certain minimum threshold):

P
(
τ k
j

) = (1 − γ ) P
(
τ k−1
j

∣∣δk−1
j

)
. (4)

This forgetting factor also keeps PFA numerically well be-
haved, rather than becoming unity after many detections.

Note that there is implicit conditioning in the above
probabilities that the “correct” association has been deter-
mined when tracking the target. Although there exists po-
tential future development to link the probability of exis-
tence with the association probabilities, the above frame-
work is sufficient for our current implementations.

4. ON-WATER EXPERIMENTAL SETUP

A series of on-water demonstrations were run at Fort
Monroe, Virginia, in June 2009 (AFP mission) and in
October and November 2009 (HVAP mission). A satellite

4Because σ‖|V , we can be certain that 2nσ/V < 1 and so this ap-
proximation is well behaved.

image of test zones is shown in Figure 6. The CARA-
CaS/SAVAnT systems were installed on two U.S. Navy ex-
perimental ASVs, pictured in Figures 7(a) and 7(b). Dur-
ing all of the on-water demonstrations, there was a trained
operator onboard the ASV to undock and dock the boats
(autonomous launch and retrieval capabilities are part of
another project) and to ensure safety.

In both scenarios, a white boat, called the “PL,” is used
as a target boat to be identified and tracked, as shown in
Figure 7(c). Although we recognize that the color of the PL
is an advantage in many conditions (except when backlit),
an analysis of how much of an advantage has not been un-
dertaken. Some dark-color contacts have been trained by
the same contact detectors for other applications but not in
the scope of this work.

4.1. AFP Mission Setup

The AFP mission tests SAVAnT ’s ability to recognize
changes in the targets around a fixed asset during the pa-
trol of a large region. Figure 8 shows the test layout. In our
setup, the ASV travels first on a southerly pass, with the
PL target docked to the hull of the fixed asset. The ASV
should at this point recognize the target and send a “new
target” alert. The closest distance between the ASV and the
asset is between 400 and 600 m. When the ASV is more than
2 km away, the PL leaves the vicinity of the asset. Thus,

Anchored �
F�leet �
Pr�otec�tion�

High-�V�alue �
Asset �
Pr�otec�tion�

Figure 6. Satellite imagery of the field test zones.
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(a) ASV for AFP mission (b) ASV for HVAP mission (c) Target boat (PL) for both missions
Figure 7. Vessels used in the field exercises.

when the ASV returns in the northerly pass it should “look
for” the previously observed target and then send a “disap-
peared target” alert when it confirms the target’s absence.
Note that in this scenario, because the ASV is concerned
only with targets near the fixed asset, contacts are accepted
only when the ASV is within 1,500 m of the asset and if
their bearings are in a 24-deg window centered on the as-
set’s position.5 This reduces the likelihood of false positives
in the crowded riverine environment; this in turn enables
the detection thresholds to be set relatively low, increasing
the probability of detecting the true target.

4.2. HVAP Mission Setup

The HVAP scenario tests CARACaS/SAVAnT ’s ability to
detect a target that approaches the fixed asset in any

5These values are derived from the SAVAnT sensor range and the
size of the fixed asset plus a comfortable margin to ensure that
good values are not thrown out.

Figure 8. Overhead view of the AFP mission scenario.

direction and investigate/intercept it. Figure 9 shows the
scenario. The baseline case was to first respond to a drift-
ing target just outside of the patrol zone’s perimeter, with
a “stretch goal” of controlling the ASV to move on a path
to intercept an (actively) incoming intruder. We present re-
sults from two tests of this scenario. In Trial 1 (22 October
2009), the PL target first drifts for several minutes about
1 km away from the asset (actually moving slowly away)
and then begins approaching. Trial 2 (5 November 2009)
takes place closer to the shoreline (increasing chances of
false detections), and the PL drifts, staying about 800 m
away from the asset.

In the HVAP mission, it is advantageous to filter out
contacts that are likely to be of known objects. For exam-
ple, we ignore contacts whose bearings are within 3 deg of
the known fixed asset location. This technique, which elim-
inates the possibility of false-positive contacts arising from
the fixed asset, is well justified by the scenario (we will al-
ways know the location of the fixed asset, as it even deter-
mines the patrol path, and we look for intruders approach-
ing it). Also, we have observed several instances of false
contact detections on known shoreline buildings that hap-
pen to be similar to the PL silhouette in size and outline. For
the results shown in the next section, SAVAnT reads in the

Asset�

ASV patrol path�

ASV intercept path�
In�truder�’s� path�

Pe�rimeter�

Figure 9. Overhead view of the HVAP mission scenario.
Three boats are involved in this test: the asset boat, the ASV,
and the intruder/target.

Journal of Field Robotics DOI 10.1002/rob



828 • Journal of Field Robotics—2010

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

Time (frame #)

P
ro

b
.

0

0.2

0.4

0.6

0.8

1

Time (frame #)

P
ro

b
.

10 20 30 40 50 60 70 80 90 10010 20 30 40 50 60 70 80 90 100 460 470 480 490460 470 480 490

Prob. Exist

Target 1 Target 2

Prob. Detect

Est. Range to Target

Std. Dev. of Est. Range

Alert Alert

S
U

S
P

E
C

T
E

D

C
O

N
F

IR
M

E
D

C
O

N
F

IR
M

E
D

D
E

LE
T

E
D

Prob. Exist

Detection

No Detection

Figure 10. Probability of existence of all targets for AFP mission, with markers indicating whether the target is detected on each
frame. Magnified regions are provided near the two alert events, for which the probability of detection is also shown, along with
a separate plot with the estimated range to the target and the standard deviation of that estimate (ranges are on separate scales;
these values have not been publicly released). The ASV is out of range of the target from about frame 85 to frame 475.

locations of selected landmarks from the region’s electronic
nautical chart (ENC) and removes any contact whose bear-
ing is within about 0.6 deg of the landmark location (three
landmarks were used for these trials). This provides an ex-
tensible approach to removing likely false positives with
limited risk that true detections are consistently thrown out.

For the results presented in the next section, we ran
SAVAnT offline in “replay mode” from the raw data
logs collected during the live exercise. The distinction be-
tween live runs and replay mode is entirely transparent to
SAVAnT, and the same results can be expected for a live
demonstration of the same data. Illustrative results from
live runs are unavailable due to technical difficulties such
as communication issues and mechanical boat failures. For
the results in the next section to represent an accurate as-
sessment of the system, the system parameters have been
set to be the same for all trials.6

6The AFP scenario has been constructed from two consecutive
passes that actually occurred in the reverse order (northerly pass
first). By switching the order, we are able to present results that
test both types of alerts, whereas in the northerly-first order we are
able to test only “new target” alert.

5. RESULTS

5.1. AFP Mission Results

In the AFP mission test (29 June 2009), the SAVAnT system
correctly identified the two alert events and triggered no
false positives. Viewing the targets’ probability of existence
(defined in Section 3.2.2) over time, as in Figure 10, pro-
vides the greatest insight into the system’s hypothesized
targets and how alerts were triggered. Figure 10 shows that
Target 1 (the PL) exists in OTCD’s target list from frames
1 to 487 and Target 2 (an unconfirmed false target) exists
during frames 607–636.7

Let us step through the mission while examining
Figure 10. Target 1’s probability of existence rises quickly
on the initial detections, causing the target to be confirmed at
frame 8, generating a “new target” alert. Then, as the ASV
gets closer to the target, the image size of the PL becomes
too large compared to the images used to train the detec-
tors, resulting in intervals with no detections (e.g., frames
29–45). However, because the probability of detection used
by OTCD (see Section 3.2.1) is low when the ASV is close

7In the AFP results, each frame is separated by about 3 s.
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Figure 11. Stabilized images from one frame in the AFP trial with contact detection results, showing one true positive (light/green
box) and one false positive (dark/red box). The two contacts are passed on to OTCD for confirmation.

to the target, the probability of existence only slightly de-
creases. [The probability of detection, the range to the target
(as estimated by OTCD’s EKF), and the standard deviation
of the range estimate are plotted in Figure 10’s expanded re-
gions.] The ASV passes the target, getting farther away and
adding a few more detections (frames 50–67), but then the
range to the PL begins to exceed SAVAnT ’s sensor range.
Again, the detection probability is low at large ranges, so
the probability of existence does not go to zero but instead
levels out while the ASV continues its patrol away from the
fixed asset.

On the return pass, the ASV comes within range of the
expected target position (starting around frame 475), but
the PL has moved away to an unobservable location. Be-
cause SAVAnT now expects to detect the target with non-
trivial probability but receives no hits on the estimated lo-
cation, the probability that it still exists at that location
decreases. Finally, the probability drops below threshold,
deleting the target and triggering a “disappeared target”
alert.

The images in Figures 11 and 12 show example con-
tacts of the PL target during the ASV’s first pass, as well
as a contact representing Target 2. Target 2 resulted from
several detections of a shoreline structure or vehicle but
did not trigger an alert because it stayed in suspected status
until being shortly deleted. This illustrates an added layer
of robustness that OTCD’s status designation provides—
although there were several associated hits, the target is not
persistent and is correctly dismissed. Note that this is a sep-
arate mechanism from the intermittent/randomly located

false contacts that are never associated to a target but in-
stead marked as false positives by MHT’s data association
process.

To detail these separate types of assignments and
OTCD’s performance, Table I indicates the assignments
that OTCD determined for all of the contacts it received
for each mission test (the HVAP results are discussed in
Section 5.2). Target assignments are divided into three
groups: PL (intended true target), similar boats (not the
PL, but an understandable confusion), and false targets
(nonboats or boats very different from the PL). The num-
ber of targets of each type is shown, with the number of
contacts assigned to the targets in parentheses.8 “Robust
misses” indicates the number of frames with no detections
between the first and last detections of the true target, de-
spite which OTCD was able to correctly maintain the target.
Finally, the number of contacts OTCD marked as false pos-
itives is listed—either “correctly” (i.e., the contact indeed
did not represent a target and was a spurious detection by
the contact server; see examples in Figure 13) or “incor-
rectly” (the contact represented the PL or other target boat,
but OTCD did not associate it to the target, which was rare).

8Recall that a contact is herein defined as a single detection event
in one time step (frame), whereas a target represents a collection
of these contacts that are associated over time with each other by
OTCD. Thus, in the AFP scenario, SAVAnT “saw” the PL 38 times
and correctly associated all 38 contacts to a single target boat.

Figure 12. Snapshots of detections in the AFP trial, with frame number. The first five images show the tracked PL target boat
(Target 1). The contact in the last image was briefly a suspected targeted by OTCD (Target 2, not confirmed).
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Figure 13. Snapshots of detections in the HVAP trials that were not the PL target boat. The boat in image (a) was a consistent
detection and thus targeted by OTCD (Trial 1, Target 2), and the contacts in the other images [(b)–(c) waves, (d)–(e) shoreline
buildings, (f) clouds] were correctly marked as false positives by OTCD.

Table I. OTCD assignment counts.

AFP HVAP 1 HVAP 2

Total contacts 66 607 440
PL targets (contacts) 1 (38) 1 (400) 1 (135)
Similar boat targets (contacts) 0 (0) 0 (0) 1 (36)
False targets (contacts) 1 (8) 0 (0) 0 (0)
Robust misses, PL 30 84 49
Correctly marked false 18 207 269
Incorrectly marked false 2 0 0

5.2. HVAP Mission Results

In both HVAP trials, SAVAnT successfully identified and
tracked the target boat, as shown by the plots of OTCD’s
probability of existence in Figure 14 and the target images
in Figure 15. In Trial 1 (22 October 2009), the boat that
OTCD labels as Target 1 is the PL (the true target), first
identified at frame 38. The target is deleted at frame 233 af-
ter several consecutive frames without detections—at this
point, the ASV has approached the target, causing it to be
too close for the contact detection algorithms (the target is
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Figure 14. Probability of existence plots for all targets identified by OTCD during HVAP mission trials. Open circles indicate
frames where the contact server did not find a detection but OTCD maintained the target track. Background color indicates when
target status is suspected (yellow/light gray) and confirmed (green/darker gray).
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Figure 15. Enlarged snapshots of the tracked target (Target 1) from HVAP trials, with the frame number on each image. Each
image is 60 × 60 pixels. Despite the different appearances of the targets, they are all identified by contact detectors and then
tracked as the same object by OTCD.

Figure 16. Contact detection results from one frame of HVAP Trial 1. One true positive (light/green box) and two false positives
(dark/red box) are superimposed on the six camera images. The false positives correspond to a lighthouse and to intermittent sun
glare from a wave.

Figure 17. Contact detection results from one frame of HVAP Trial 2. One true positive (light/green box) and three false posi-
tives (dark/red box) are superimposed on the six camera images. The false positives correspond to the asset boat, a building on
shore, and sun glare from a wave. The IMU-camera transform for camera 3 (bottom center) was incorrect, resulting in poor image
stabilization.

“handed off” to a close-range stereo perception system).
Late in Trial 1, a second target is also identified; although
technically this target is a false positive because it was not
the PL, it represents an accurate track of a distant sailboat
whose shape matched nearly enough to the PL so that it
was consistently identified by SAVAnT [see Figure 13(a)].
The ASV did not react to intercept this target, however, be-

cause it remained distant.9 See Figure 16 for a view through
all six cameras.

9A heuristic system is in place to set intercept priority, based on the
target’s range, persistence (number of contacts), and probability of
existence.

Journal of Field Robotics DOI 10.1002/rob



832 • Journal of Field Robotics—2010

0 200 400 600 800
0

100

200

300

400

500

600

700

E (m)

N
 (

m
)

PL

ASV

-200 0 200 400 600 800
-300

-200

-100

0

100

200

300

400

E (m)
N

 (
m

)

PL

ASV

(a) Trial 1 (b) Trial 2
Figure 18. ASV and target (PL) paths for the HVAP trials.

In Trial 2 (5 November 2009), SAVAnT correctly identi-
fies and tracks the PL target, despite difficult lighting con-
ditions (e.g., see Figure 17), for nearly the entire 500-frame
trial, and the PL is still being tracked when the session
is ended. Note that, because of OTCD’s Bayesian-updated
probability of existence, SAVAnT is robust to upstream
missed detections throughout the trial, which might occur
at particularly difficult temporary conditions (e.g., view an-
gle, lighting, waves). These missed detections cause dips in
the probability of existence but are not sustained enough to
“delete” the target.

Images from sample false-positive contact detections
are also provided in Figure 13. Note that, other than the
sailboat shown in image (a), all false positives such as these
are correctly marked as false contacts by OTCD and not as-
signed to a target. Thus, the SAVAnT output will not in-
clude these more intermittent hits. On the basis of manu-
ally scoring of the trial, we have verified there are no false
associations—that is, all the detections that were assigned
to the three targets (across both trials) were indeed the same
boat.

The paths of the ASV (as well as the PL) for each trial
are plotted in Figure 18, as collected by GPS data. In Trial
1, the ASV is nearly stationary to start and then approaches
the PL as it is being tracked. In Trial 2, the ASV patrol path
is more clearly visible, and the approach to the PL can be
seen in the upper right. (Note that the results in Figure 14
represent only a subset of the data from the path shown, as,
in our test plan, the SAVAnT system was not engaged for
the entire time on water.)

6. CONCLUSIONS

This paper presented the SAVAnT autonomous perception
and situation awareness elements of a patrol ASV, in the

framework of an integrated autonomy architecture (CARA-
CaS). We have shown that SAVAnT can successfully de-
tect and track other vessels in two types of asset protection
missions. We have demonstrated that our contact detection
methods correctly identify the target across a variety of con-
ditions and that, by placing OTCD’s additional methods of
rejecting false-positive contacts downstream of the contact
detector, we can set the detector thresholds lower and thus
reduce the risk of missing a true target. For the challeng-
ing cases in which SAVAnT must “track” targets that are
no longer in camera range for later return on the patrol, we
achieved success by tracking targets in world coordinates
(by decoupling the contact detection and target tracking
problems) and by innovating new multitarget tracking ad-
vancements in the OTCD algorithm (particularly the han-
dling of the probabilities of detection and of existence).

Many opportunities for future work exist. Long-range,
real-time contact detection continues to be a difficult
challenge, and our results included a few hypothesized tar-
gets that were not the intended boat class. Multiresolu-
tion approaches may improve these results, though there
remains a fundamental question of knowing “how many
pixels” are required for reliable detection of only a given
target class. Narrowing the region of interest in detection—
e.g., considering only image locations in which targets have
been hypothesized, processing whole frames only occa-
sionally to look for new targets—may also help by freeing
computation time for further image processing. Going for-
ward, we wish to train the contact detectors for handling
multiple target classes, achieving not only detection but
also classification from these algorithms.

On the tracking side, although bearings-only measure-
ments can be sufficient with low false-positive rates, data
association can likely be improved by also considering in-
clination angle (easily incorporated for stabilized images),
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range information (if reasonable estimates are obtainable
by inclination calculations, target image size, or other sen-
sors), time-history image similarities, and/or class infor-
mation (when more contact classes are added). Ultimately,
advancements such as these will aid in producing an om-
nidirectional maritime perception system capable of identi-
fying, classifying, and tracking a variety of targets (on sea,
on land, and in the air), enabling long-term, reliable ASV
patrol operations.
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